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Exercise 1 (6.4.17). Suppose that I ⊆ R is an open interval and that f ′′(x) ≥ 0 for all
x ∈ I. If c ∈ I, show that the part of the graph of f on I is never below the tangent line to
the graph at (c, f(c)).

Proof. By Taylor’s Theorem, for any x ∈ I, there exists a x0 ∈ I between c and x such that

f(x) = f(c) + f ′(c)(x− c) +
f ′′(x0)

2
(x− c)2,

which implies that
f(x) ≥ f(c) + f ′(c)(x− c),

since f ′′(x) ≥ 0 for all x ∈ I. Therefore the part of the graph of f on I is never below the
tangent line to the graph at (c, f(c)). □

Exercise 2 (6.4.18). Let I ⊆ R be an interval and c ∈ I. Suppose that f and g are defined
on I and that the derivatives f (n), g(n) exist and are continuous on I. If f (k)(c) = 0 and
g(k)(c) = 0 for k = 0, 1, ..., n− 1, but g(n)(c) ̸= 0, show that

lim
x→c

f(x)

g(x)
=

f (n)(c)

g(n)(c)
.

Proof. Without loss of generality, we assume g(n)(c) > 0. By continuity of g(n), there exists
a δ1 > 0 such that

|g(n)(x)− g(n)(c)| < 1

2
g(n)(c),

for all |x− c| < δ1, which implies

g(n)(x) >
1

2
g(n)(c),

for all |x− c| < δ1. Moreover, By continuity of f (n) and g(n), for arbitrary ε > 0, there exists
a δ2 > 0 such that

|f (n)(x)− f (n)(c)| < |g(n)(c)|
4

ε, |g(n)(x)− g(n)(c)| < |g(n)(c)|2

4|f (n)(c)|
ε,

for all |x− c| < δ2. Then by Taylor’s Theorem, for all |x− c| < min{δ1, δ2}, we have∣∣∣∣f(x)g(x)
− f (n)(c)

g(n)(c)

∣∣∣∣ =

∣∣∣∣f (n)(x0)

g(n)(x0)
− f (n)(c)

g(n)(c)

∣∣∣∣
≤ 2

|g(n)(c)|2
(|f (n)(x0)− f (n)(c)||g(n)(c)|+ |f (n)(c)||g(n)(x0)− g(n)(c)|)

< ε,

which implies that

lim
x→c

f(x)

g(x)
=

f (n)(c)

g(n)(c)
.

□
1
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Exercise 3 (6.4.19). Show that the function f(x) := x3− 2x− 5 has a zero r in the interval
I := [2, 2.2]. If x1 := 2 and if we define the sequence (xn) using the Newton procedure, show
that |xn+1 − r| ≤ (0.7)|xn − r|2. Show that x4 is accurate to within six decimal places.

Proof. Since
f(2)f(2.2) = −1.248 < 0,

which implies that f has a zero in I. In addition, since

|f ′(x)| = |3x2 − 2| ≥ 10, x ∈ I,

|f ′′(x)| = |6x| ≤ 13.2, x ∈ I.

By Newton’s Method, we have

K =
13.2

20
= 0.66,

which implies that
|xn+1 − r| ≤ 0.7|xn − r|2.

Therefore

|x4 − r| ≤ 0.7|x3 − r|2 ≤ 0.72|x2 − r|4 ≤ 0.73|x1 − r|8 ≤ 9× 10−7,

which implies x4 is accurate to within six decimal places. □

Exercise 4 (6.4.21). Approximate the real zeros of h(x) := x3 − x − 1. Apply Newton’s
Method starting with the initial choices (a) x1 := 2, (b) x1 := 0, (c) x1 := −2. Explain what
happens.

Proof. Since
h′(x) = 3x2 − 1,

the iteration formula is

xn+1 = xn −
x3
n − xn − 1

3x2
n − 1

=
2x3

n + 1

3x2
n − 1

.

(a) For x1 := 2, we have x2 = 1.5454545454, x3 = 1.359614915915184, x4 = 1.325801345005845,
x5 = 1.3247190494171253, x6 = 1.3247179572458576.

(b) For x1 := 0, we have x2 = −1, x3 = −0.5, x4 = −3, x5 = −2.0384615384615383,
x6 = −1.3902821472167362, x7 = −0.9116118977179269, x8 = −0.34502849674816904,
x9 = −1.42775070402727, x10 = −0.9424179125094826, x11 = −0.4049493571993791, x12 =
−1.7069046451828482, x13 = −1.1557563610748112, x14 = −0.6941918133295446, x15 =
0.7424942987207317, x16 = 2.7812959406771816, x17 = 1.9827252470435746,
x18 = 1.5369273797581307, x19 = 1.3572624831876983, x20 = 1.3256630944288657, x21 =
1.324718788615257, x22 = 1.32471795724539.

(c) For x1 := −2, we have x2 = −1.3636363636363638, x3 = −0.8892353134230391,
x4 = −0.29609491722682657, x5 = −1.2864352364252927, x6 = −0.8217128731113184,
x7 = −0.10691984835296453, x8 = −1.03298211799929, x9 = −0.5472085094190648, x10 =
−6.611274711607757, x11 = −4.433702585989313, x12 = −2.989538057557567,
x13 = −2.031496813533126, x14 = −1.3854649531667529, x15 = −0.9075970552862211,
x16 = −0.33661987193684095, x17 = −1.3994357597139493, x18 = −0.9192055355939536,
x19 = −0.3605283713478141, x20 = −1.4855582794693762, x21 = −0.9886592503827742,
x22 = −0.4826912520186133, x23 = −2.5747641103691308, x24 = −1.7544435797503293,
x25 = −1.190229561606389, x26 = −0.7299425321629264, x27 = 0.37120956464817956,
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x28 = −1.8791055025333052, x29 = −1.2790826744313537, x30 = −0.8150369612962106,
x31 = −0.08343010635041948, x32 = −1.0201408804244034, x33 = −0.5293414717824825,
x34 = −4.4127113786720065, x35 = −2.9756275206939176, x36 = −2.0222349844904874,
x37 = −1.3790536473294959, x38 = −0.9022331545785207, x39 = −0.3251428738220351,
x40 = −1.3637814489635551, x41 = −0.8893583038994928, x42 = −0.2963784747231665,
x43 = −1.2871128668662455, x44 = −0.822325743167123, x45 = −0.10902119046333758,
x46 = −1.0342878895057943, x47 = −0.5489915337873275, x48 = −6.9822885227693545,
x49 = 4.680020332909626, x50 = −3.1527764448637754, x51 = −2.140083129871087, x52 =
−1.4602171044569312, x53 = −0.9685635995638602, x54 = −0.4504371240959939, x55 =
−2.0883677454698484, x56 = −1.4247054725546997, x57 = −0.9399406438426444, x58 =
−0.40040427420864433, x59 = −1.6793109477226182, x60 = −1.1355642957994752, x61 =
−0.6723450974394425, x62 = 1.1010597171365635, x63 = 1.3916209468034497,
x64 = 1.3285408122104765, x65 = 1.3247315055694269, x66 = 1.3247179574157972.
Recall that

h′(x) = 3x2 − 1 = 3

(
x+

√
3

3

)(
x−

√
3

3

)
,

which implies that h is increasing over (−∞,−
√
3/3), decreasing over (−

√
3/3,

√
3/3) and

increasing over (
√
3/3,∞). The local maximum is h

(
−
√
3/3
)

= 2
√
3/9 − 1 < 0 and

lim
x→∞

h(x) = ∞, therefore h has a unique root (three roots with the same value) r. Since

h′(
√
3/3) = 0 and h

(√
3/3
)
= −2

√
3/9 − 1 < 0, by the convergence theorem for Newton’s

Method, the initial approximate value x1 should at least lie in (
√
3/3,∞), which implies that

Newton’s Method is not suitable to be apply in case (b) and (c). This also explains the huge
amount of computation in case (b) and (c).

Set I := [1.32, 2]. Since f(1.32)f(2) < 0, we have r ∈ I. Moreover,

|f ′(x)| ≥ |f ′(1.32)| = 4.2271, x ∈ I,

|f ′′(x)| ≤ |f ′′(2)| = 12, x ∈ I,

then by the convergence theorem for Newton’s Method,

K =
6

4.2271
= 1.419379258137774,

therefore the initial approximate value x0 satisfies

|x0 − r| < 1

K
= 0.7045333333333332.

Because 1.32 + 0.7045333333333332 > 2 and 2 ∈ I, the convergence theorem for Newton’s
theorem can be applied to case (a). This explains the fast convergence in case (a). □

Exercise 5 (7.1.1). If I := [0, 4], calculate the norms of the following partitions:
(a) P := (0, 1, 2, 4),
(b) P := (0, 2, 3, 4),
(c) P := (0, 1, 1.5, 2, 3.4, 4),
(d) P := (0, .5, 2.5, 3.5, 4).

Proof. (a) ∥P∥ = 2.
(b) ∥P∥ = 2.
(c) ∥P∥ = 1.4.
(d) ∥P∥ = 2. □
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Exercise 6 (7.1.2). If f(x) := x2 for x ∈ [0, 4], calculate the following Riemann sums, where
Ṗi has the same partition points as in Exercise 5, and the tags are selected as indicated.

(a) Ṗ1 with the tags at the left endpoints of the subintervals.
(b) Ṗ1 with the tags at the right endpoints of the subintervals.
(c) Ṗ2 with the tags at the left endpoints of the subintervals.
(d) Ṗ2 with the tags at the right endpoints of the subintervals.

Proof. (a) S(f, Ṗ) = 9.
(b) S(f, Ṗ) = 37.
(c) S(f, Ṗ) = 13.
(d) S(f, Ṗ) = 33. □


